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ABSTRACT

Transconductance and output conductance non—linearities
of a single gate GaAs MESFET are used to define promising
multiplier bias levels and harmonic loads. The model e-
nables design of 25 mW 4-8 GHz doubler with 6 dB gain,
20 oW 4-12 GHz tripler with 3 dB gain and 2 mW 4-16 GHz

quadrupler with 2 dB gain,

INTRODUCTION

Although the use of single-gate and dual-gate GaAs MES-
FET doublers is now well establishedil-3] and analyti-
cal models have been presented{4,5] little attempt seems
to have been made to explore, in a systematic fashion,
optimal bias points and harmonic loads.

Ig this paper the major sources of non-linearity in a
single gate GaAs MESFET are investigated both analyti-
cally and experimentally in order to determine optimum
dc biasing points and harmonic load impegances. By the-
se means, a GaAs MESFET (lm x 600 pam) 4 GHz multi-
plier has been realized which gives the following ex—
cellent results : doubler (8 GHz), 6 dB gain with 25mW
output power; tripler (12 GHz), 3 dB gain with 20 mW
output power; quadrupler (16 GHz), 2 dB gain with 2 mW
output power.

NON-LINEAR ANALYSIS

It has quickly become established that the main sources
of non-linearity in a single gate GaAs MESFET are the
trangconductance, gm, and the output conductance, gd.
Pumping the gate inpute to a common-source MESFET will
yield, under appropriate bias conditions, harmonic pro—
ducts which can be enhanced or diminished by appropria-
te terminations. It was decided, in this work, to esta-
blish : (a) the dc bias conditions most conducive to
harmonic generation, and (b) the harmonic terminations
necessary to enhance successively production of 2nd, 3nd
and 4 th harmonics.

A non~linear equivalent circuit model for the
MESFET, figure 1, was selected and initial element va-
lues for the linear operating region were obtained in
the usual manner. Next all element values, excepting gm
and gd, were fixed. A campaign of S- parameter measure-
between 500 MHz and 1 GHz was executed for a succession
of static gate—source, Vgs, and drain~source, Vds, bias
levels. Finally values of gm and gd that would permit
the equivalent circuit to fit with S-parameter data at
each bias level were calculated following referencelél.
From the results, figure 2, it is possible to select
bias conditions and a fundamental load-line which fa-
vours harmonic generation due to gm (zone I), gd (zone
IT), or both (zone III for example).

A quasi-static approach is now applied, whereby
gm (Vgs, Vds) and gd (Vgs, Vds) are transformed into
large signal dynamic functions Gm (vg) ,6d (vg) where
vg (t) is a large-signal dynamic voltage applied to the
gate. The transformation of gm and gd into Gm and Gd is
effected by : a) selecting a load line to link unambi-
guously input voltage vg (t) and dutput voltage vd (t))
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and,b) the discretization of vg (t) into incremental
steps,MVg= vg (t+ A t)-vg (t). This permits the curves
of figure 2 to be consulted either for a graphical ana-
lysis or a numerical analysis. Finally a Fourier analy-
sis is used to transform Gm (t) and Gd (t) into the fre-
quency domain,

Initial analysis indicated that optimum dc
bias points for rich harmonic generation are near pinch-
off ,(zone I), or near Vgs 0 , (zone II). From figures 2
(a) and 2 (c),zone I requires a short-circuit load-line
on transistor output and Vds = 4V, Zone II, figures 2
(b) and 2 (d), requires on the other hand an open~-cir-
cuit load line and Vds = 2V.

EXPERIMENTAL RESULTS

-

Low Frequency Measurements

Experimental measurements with a fundamental
frequency of 100 MHz were carried out in order to con-
firm the results of the theoretical analysis at frequen-—
cies under which harmoniec terminations could easily be
verified. Drain voltage waveforms under different bias
and load conditions could equally be observed.

Zone I. Biasing the transistor near pinch-off and adjus-
ting the output cireuit for maximum second harmonic out-—
put power, resulted in an output impedance at the funda-
mental and third harmonic equal to a short circuit. Thus,
non—~linear transconductance is the predominant harmonic
generator.

Zone II. When gate bias is changed to zero volts, opti-
mum doubler operation is obtained with an output funda-
mental frequency open circuit load. In this case, the
output conductance is the important non-linearity. It
should be noted that when the dynamic input voltage is
higher than 0.6 volts, gate current starts up with con-—
sequent voltage clipping. This unwanted phenomenon can
be minimized by placing a high series resistance in the
gate bias circuit, which self-biases the device (clam—
ping effect). The drain voltage waveform, as observed
by means of a sampling oscilloscope, is close to a half
wave rectified sinusoid - a waveform rich in even harmo-
nics.

Zone ITI. Vgs is maintained at zero volts, but terminal
loads are changed : an open circuit for the fundamental,
a short circuit for second harmonic. In this case Gm (t)
as well as Gd (t) contribute to harmonic generation yiel-
ding the symmetrically distorted drain voltage waveform
of figure 3, a characteristic of odd harmonic content.

Microwave Results (4~-8) GHz, (4-12) GHz and (4~16)GHz.

Zone I operation is akin to class — B operation : gain
and power added efficiency increase rapidly with drive
level reaching a maximum of 5 dB gain, and power added
efficiency {nadd)= 8% for an output power of 14 dBm.
Above this level gain falls off, althoughkladd and out-—
put power both continue increasing.

Zone II and IIT were favoured for harmonic generation,
principally because input matching was easier to accom—
plish and efficient harmonic generation was obtained
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over a wide range of signal drive (10 dB). Thus a dou-

bler gain of 6 dB was obtained for 14 dBm output power Lg Rg Rg _Ld

and ¥ add = 4% for the circuit shown in figure 4. G o T é}d l - TIITI 0 D
9

complex. Two A/8 open circuit stubs at the fundamental
frequency of 4 GHz followed by a high pass filter were
used. A constant multiplier gain of 2 dB was measured Rg
for a 3 dB input power variation. Maximum non-saturated

output power equalled 2 mW, Ls

. . vt Cas 1
For the quadrupler, the output circuit was more ¥ m [}d
Rj

For tfipler operation, the harmonic loads confir-
med by low frequency measurements were applied as shown
in figure 5. Lenghts 1. and 1 were selected to give
appropriate reactive loads at the fundamental and second FIG 1:CIRCUIT MODEL OF A GaAs MESFET
harmonic frequencies, while the band-pass filter was de~
signed to let pass the 12 GHz third harmonic. Tripler
gain of 3,0 dB and maximum Pout of 13 dB were obtained
with add = 3%.

CONCLUSION

In this paper an analysis procedure has been de-
veloped for single-gate GaAs MESFET multipliers. The
approach uses the non-linear variatioms of the trans-
conductance, gm, and output conductance, gd, of the
transistor, obtained by small-signal S-Parameter measu-
rements over a wide range of bias points, to simulate
multiplier behaviour. Thus d-c operating zones and har-
monic and fundamental frequency loads are predicted and
confirmed by v.h.f. and microwave results. The method
has successfully permitted design of 4 GHz,/8 GHz,

4 GHz,/12 GHz, and 4 GHz/16 GHz multipliers as experi-
mental results prove.

It should be noted that in this analysis, Cgd,
drain~to-gate feedback capacitance has been neglected.
This omission is being corrected in order to enable the
model to be extended to higher frequencies.
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FIG 4 : HARMONIC LOAD FOR A DOEBLER CIRCUIT
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FIG 5 : HARMONIC LOAD FOR A TRIPLER CIRCUIT
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FIG 2 : NON-LINEAR ELEMENTS FUNCTION OF Vgs and Vds.
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